Categories
Conditions/Tests

Ashkenazi Jewish Carrier Screening

Ashkenazi Jewish Carrier Screening

It is the responsibility of the ordering physician to ensure that informed consent has been obtained from the patient/legal guardian before ordering genetic testing. Please review the following Pre-Test Counselling Information with your patient before requesting any of our genetic tests.

Clinical Features

Tay-Sachs disease: A progressive neurodegenerative disorder caused by intralysosomal storage of the specific glycosphingolipid GM2 ganglioside. Affected individuals generally die before the age of 4 years. The carrier frequency of this disorder in the Ashkenazi Jewish population is 1/30.

Fanconi anemia type C: A condition characterized by congenital anomalies, aplastic anemia and an increased risk of malignancies. The carrier frequency of this disorder in the Ashkenazi Jewish population is 1/90.

Canavan disease: Characterized by macrocephaly, lack of head control, developmental delays by the age of three to five months, severe hypotonia, and failure to achieve independent sitting, ambulation, or speech. Affected individuals generally live into their teens. The carrier frequency of this disorder in the Ashkenazi Jewish population is 1/40.

Familial dysautonomia: Characterized by gastrointestinal dysfunction, vomiting crises, recurrent pneumonia, altered sensitivity to pain and temperature perception, and cardiovascular instability. The carrier frequency of this disorder in the Ashkenazi Jewish population is 1/30.

Genetics

All of these conditions have an autosomal recessive inheritance pattern. These conditions have an increased incidence in the Ashkenazi Jewish population, relative to other populations, due to founder mutations. 

 

GENE

Reference #

Mutation

Historical Nomenclature

Mutation

HGVS Nomenclature

HEXA NM_000520.4

 

1278insTATC c.1274_1277dupTATC (p.Tyr427IlefsTer5)
G269S c.805G>A (p.Gly269Ser)
IVS12+1G>C c.1421+1G>C
IKBKAP NM_003640.3 R696P c.2087G>C (p.Arg696Pro)
2507+6T>C c.2204+6T>C
ASPA NM_000049.2 693C>A c.693C>A (p.Tyr231Ter)
854A>C c.854A>C (p.Glu285Ala)
FANCC NM_000136.2 IVS4+4A>T c.456+4A>T

 

 

In patients of Ashkenazi Jewish ancestry, these mutations account for 98% of Canavan disease alleles; over 99% of Familial dysautonomia alleles; greater than 90% of Fanconi anemia alleles; and 95% of Tay-Sachs disease alleles.

Indications for Testing

A completed AJ Carrier & Tay Sachs Enzyme Screening Supplemental Info Form must be received before testing will proceed.

  1. Carrier testing:
    1. BOTH members of the couple MUST BE or MAY BE of Ashkenazi Jewish ancestry.  If the couple is NOT pregnant, testing should be sequential (a negative result in one member sufficiently reduces the risk such that additional testing is unnecessary).

NOTE: All four conditions are tested and reported; individual tests cannot be requested.  If a couple wishes Tay-Sachs screening only, see AJ Carrier & Tay Sach Enzyme Screening Algorithm.  

Contraindications

  1. This test is not indicated for:
    1. Individuals of Ashkenazi Jewish ancestry whose partner is non-Ashkenazi (non-Jewish or Sephardi) (i.e. mixed couples). 
    2. Individuals of Sephardi Jewish or French Canadian ancestry seeking carrier screening for Tay-Sachs disease. 

See AJ Carrier & Tay Sachs Enzyme Screening Algorithm and the SOGC/CCMG Clinical Practice Guideline for further details.

     2. This test is not indicated for children who have not yet reached reproductive age.

     3. This test cannot distinguish homozygotes from heterozygotes and so is not generally useful for diagnostic testing or prenatal diagnosis; consult the on-service Molecular Geneticist. 

Description of this Assay

The Elucigene Ashplex 1 Assay (Gen-Probe, Inc) is used to assess the c.1274_1277dup, c.805G>A and c.1421+1G>C mutations in the HEXA gene; the c.693C>A and c.854A>C mutations in the ASPA gene; the c.2087G>C and the c.2204+6T>C mutations in the IKBKAP gene; and the c.456+4A>T mutation in the FANCC gene. The normal sequence is not assessed; detection of a mutation in the context of carrier screening is interpreted as heterozygosity for the mutation. Individual mutations/conditions can not be independently tested.

Sensitivity and Limitations

This test is designed to detect carrier status for the common Ashkenazi founder mutations in these 4 genes only. Mutations other than those analyzed exist and are not detected by this assay. This test cannot distinguish between heterozygous carriers and homozygous affected individuals and so should not be used to confirm a clinical diagnosis of any of these conditions.

Turnaround Time

Routine

6 weeks

Pregnancy-related/Prenatal

If pregnancy management will be altered, 3 weeks; otherwise, routine TAT.

Specimen Requirements

Blood: 4 mL EDTA is optimal (Minimum: 1 mL EDTA)
DNA: 100 μL at 200 ng/μL is optimal (Minimum: 30 μL at 200 ng/μL)

Label each sample with three patient identifiers; preferably patient name, PHN, and date of birth and ship to the address below. Samples should be shipped at room temperature with a completed MGL Requisition to arrive Monday to Friday (not on Canadian statutory holidays). 

Additional Requirements

A completed AJ Carrier & Tay Sachs Enzyme Screening Supplemental Info Form MUST accompany the requisition.

Test Price and Billing

Testing is only available to residents of Canada, except in very specific circumstances where testing is urgent or emergent.  Payment is not required when requests are made for individuals who are insured by Health Insurance BC (administered through the BC Medical Services Plan (MSP)) AND eligible for testing according to the test utilization guidelines / policy. If the individual undergoing testing is not insured by these providers or does not meet utilization guidelines or policy, please complete a billing form; testing will only commence after receipt of billing informationTest prices can be found here.

Cautions

Molecular genetic testing is limited by the current understanding of the genome and the genetics of a particular disease, as well as by the method of detection used. This method will not detect all mutations (e.g., mutations outside the regions tested as described above, large genomic deletions, promoter mutations, regulatory element mutations).

For carrier/predictive testing due to family history, it is generally important to first document the gene mutation in an affected or carrier family member. This information should be provided to the laboratory for assessment of whether the assay is appropriate for detection of the familial mutation, and to aid in the interpretation of data.

In rare cases, DNA alterations of undetermined or unclear clinical significance may be identified.

Rare single nucleotide variants or polymorphisms could lead to false-negative results. If results obtained do not match the clinical findings, consult the on-service Molecular Geneticist.

A previous bone marrow transplant from an allogenic donor will result in molecular data that reflects the donor genotype rather than the recipient (patient) genotype. Consult the on-service Molecular Geneticist for approach to testing in such individuals.

Transfusions performed with packed red blood cells will generally not affect the outcome of molecular genetic testing. However, if there is no clinical urgency, the cautious approach is to wait one week post packed red cell transfusion before collecting a sample for genetic testing. Consult the on-service Molecular Geneticist as needed.

Test results should be interpreted in the context of clinical findings, family history, and other laboratory data. Errors in our interpretation of results may occur if information given is inaccurate or incomplete.

Categories
Conditions/Tests

Angelman Syndrome

Angelman Syndrome

It is the responsibility of the ordering physician to ensure that informed consent has been obtained from the patient/legal guardian before ordering genetic testing. Please review the following Pre-Test Counselling Information with your patient before requesting any of our genetic tests.

Clinical Features

Angelman syndrome (AS) is characterized by severe developmental delay or mental retardation, severe speech impairment, gait ataxia, microcephaly and seizures. Individuals with AS often have specific behavioural characteristics including frequent laughing, smiling, and general excitability.

Genetics

AS is caused by the loss of the maternal expression of the UBE3A gene, which is normally silenced (not expressed) from the paternally-inherited allele. The loss of maternal expression can occur due to one of several different known genetic mechanisms: deletion of the maternal 15q11.2-q13 region (~68%); paternal uniparental disomy (~7%) of chromosome 15; mutation of the imprinting centre in the 15q11.2-q13 region (~3%); or a mutation in the maternal UBE3A allele (~11%).

Indications for Testing

  1. Confirmation of diagnosis:
    1. This test should be used as the first line diagnostic test in a child with a suspected clinical diagnosis of AS as it provides information regarding methylation, regardless of underlying mechanism. See test algorithm for further details.
  2. Prenatal testing (prenatal diagnosis requests are not normally accepted from physicians other than Medical Geneticists):
    1. In pregnancies at risk of AS due to a methylation abnormality. NB: The recurrence risk for couples who have a previous child with AS is generally quite low (< 1%) except in rare cases. Genetic counselling is recommended.   

Description of this Assay

Differential PCR amplification of bisulfite treated DNA at the CpG island of SNRPN to assess the methylation pattern of this region. Note: This assay detects the methylation patterns associated with both PWS and AS.

Sensitivity and Limitations

This test identifies individuals with AS due to abnormal imprinting, whether by maternal deletion, paternal UPD, or imprinting defect. When an individual is positive by this assay, follow-up studies (see test algorithm) are required to ascertain the underlying mechanism.

Approximately 10% of individuals with Angelman syndrome have the condition due to a mutation in the maternal UBE3A gene, which does not result in abnormal imprinting of the region. Therefore, a negative result on this assay does not rule out the diagnosis of Angelman syndrome. If clinical suspicion remains high, consideration may be given to pursuing funding for UBE3A sequencing to be performed at an out-of-province laboratory. Please see our Out of Province Testing Protocol for further information.

Turnaround Time

Routine

6 weeks

Pregnancy-related/Prenatal

If pregnancy management will be altered, 3 weeks; otherwise, routine TAT.

Specimen Requirements

Blood: 4 mL EDTA is optimal (Minimum: 1 mL EDTA)
DNA: 100 μL at 200 ng/μL is optimal (Minimum: 30 μL at 200 ng/μL)

Label each sample with three patient identifiers; preferably patient name, PHN, and date of birth and ship to the address below. Samples should be shipped at room temperature with a completed MGL Requisition to arrive Monday to Friday (not on Canadian statutory holidays).  

Prenatal Specimens
Prenatal testing REQUIRES LABORATORY CONSULTATION PRIOR TO THE PROCEDURE and can only be ordered by a Medical Geneticist. Contact the laboratory at 604-875-2852 and choose the appropriate option for the Molecular Geneticist on service.
Chorionic Villi: 20 mg.
Direct Amniotic fluid: 25 mL collected in two separate tubes of equal volume.
Cultured Amniocytes: Two (2) 100% confluent T-25 flasks.
DNA extracted from prenatal specimens: 100 μL at 200 ng/μL is optimal (Minimum: 30 μL at 200 ng/μL)

Label each sample with three patient identifiers; preferably patient name, PHN, and date of birth. Ship samples by overnight courier with a completed MGL Requisition to arrive Monday to Friday (not on Canadian statutory holidays) as follows:

  • Villi – on wet ice or in media at room temperature
  • Amniocytes, Amniotic fluid, DNA – at room temperature

Shipping Address

Specimen Receiving Room 2J20

Children’s & Women’s Health Centre of British Columbia – Laboratory

4500 Oak Street, Vancouver, BC, V6H 3N1


Test Price and Billing

Testing is only available to residents of Canada, except in very specific circumstances where testing is urgent or emergent.  Payment is not required when requests are made for individuals who are insured by Health Insurance BC (administered through the BC Medical Services Plan (MSP)) AND eligible for testing according to the test utilization guidelines / policy. If the individual undergoing testing is not insured by these providers or does not meet utilization guidelines or policy, please complete a billing form; testing will only commence after receipt of billing informationTest prices can be found here.

Cautions

Molecular genetic testing is limited by the current understanding of the genome and the genetics of a particular disease, as well as by the method of detection used.

Rare single nucleotide variants or polymorphisms could lead to false-negative or false-positive results. If results obtained do not match the clinical findings, consult the on-service Molecular Geneticist.

A previous bone marrow transplant from an allogenic donor will result in molecular data that reflects the donor genotype rather than the recipient (patient) genotype. Consult the on-service Molecular Geneticist for approach to testing in such individuals.

Transfusions performed with packed red blood cells will generally not affect the outcome of molecular genetic testing. However, if there is no clinical urgency, the cautious approach is to wait one week post packed red cell transfusion before collecting a sample for genetic testing. Consult the on-service Molecular Geneticist as needed.

Test results should be interpreted in the context of clinical findings, family history, and other laboratory data. Errors in our interpretation of results may occur if information given is inaccurate or incomplete.

Categories
Conditions/Tests

Androgen Insensitivity Syndrome

Androgen Insensitivity Syndrome

Androgen Resistence Syndrome; AIS.

It is the responsibility of the ordering physician to ensure that informed consent has been obtained from the patient/legal guardian before ordering genetic testing. Please review the following Pre-Test Counselling Information with your patient before requesting any of our genetic tests.

Clinical Features

Androgen insensitivity syndrome spectrum disorder is characterized by feminization of the external genitalia, abnormal secondary sexual development, and infertility in individuals with a 46,XY karyotype.  AIS can be divided into three categories based on the clinical presentation:

  • Complete androgen insensitivity syndrome (CAIS), with typical female external genitalia
  • Partial androgen insensitivity syndrome (PAIS) with predominantly female, predominantly male, or ambiguous external genitalia
  • Mild androgen insensitivity syndrome (MAIS) with typical male external genitalia

Genetics

AIS is an X-linked disorder caused by mutations in the Androgen Receptor (AR) gene. Individuals with AIS have normal levels of testosterone and dihydrotestosterone production but are unable to utilize it due to the defect in the androgen receptor. These individuals do not respond to testosterone treatment, in contrast to individuals with 5- α reductase deficiency.  The majority of mutations identified to date have been sequence mutations, although a few whole and partial gene deletions have also been identified.

Indications for Testing

1)      Confirmation of diagnosis:

  • Patients with clinical findings consistent with AIS.
  • Test requested by an Endocrinologist or Medical Geneticist

2)      Carrier testing:

  • Adult women at risk to be carriers of an AR mutation because they have had a child with, or have a family history of confirmed AIS.

3)      Prenatal testing (prenatal diagnosis requests are not normally accepted from physicians other than Medical Geneticists):

  • Pregnancies known to be at risk of AIS when the AR mutation is known.

Description of this Assay

Bidirectional Sanger sequencing of the coding sequence and flanking intronic sequences of the AR gene.

Reference Sequence

NM_000044 The ‘A’ within the initiation codon, ATG, is designated as nucleotide number 1.

Sensitivity and Limitations

Sequence analysis is expected to identify mutations in 95% of individuals with complete androgen insensitivity (AIS). For individuals with a milder phenotype (partial AIS or mild AIS) the detection rate is unknown, but is less than 50% for PAIS and even less for MAIS.

Turnaround Time

Routine

8 weeks

Specimen Requirements

Blood: 4 mL EDTA is optimal (Minimum: 1 mL EDTA)
DNA: 100 μL at 200 ng/μL is optimal (Minimum: 30 μL at 200 ng/μL)

Label each sample with three patient identifiers; preferably patient name, PHN, and date of birth and ship to the address below. Samples should be shipped at room temperature with a completed MGL Requisition to arrive Monday to Friday (not on Canadian statutory holidays). 

Test Price and Billing

Testing is only available to residents of Canada, except in very specific circumstances where testing is urgent or emergent.  Payment is not required when requests are made for individuals who are insured by Health Insurance BC (administered through the BC Medical Services Plan (MSP)) AND eligible for testing according to the test utilization guidelines / policy. If the individual undergoing testing is not insured by these providers or does not meet utilization guidelines or policy, please complete a billing form; testing will only commence after receipt of billing informationTest prices can be found here.

Cautions

Molecular genetic testing is limited by the current understanding of the genome and the genetics of a particular disease, as well as by the method of detection used. This method will not detect all mutations (e.g., large genomic deletions/duplications, promoter mutations, regulatory element mutations).

For carrier/predictive testing due to a family history, it is generally important to first document the gene mutation in an affected or carrier family member. This information should be provided to the laboratory for assessment of whether the assay is appropriate for detection of the familial mutation, and to aid in the interpretation of data.

In some cases, DNA alterations of undetermined or unclear clinical significance may be identified.

Rare single nucleotide variants or polymorphisms could lead to false-negative results. If results obtained do not match the clinical findings, consult the on-service Molecular Geneticist.

A previous bone marrow transplant from an allogenic donor will result in molecular data that reflects the donor genotype rather than the recipient (patient) genotype. Consult the on-service Molecular Geneticist for approach to testing in such individuals.

Transfusions performed with packed red blood cells will generally not affect the outcome of molecular genetic testing. However, if there is no clinical urgency, the cautious approach is to wait one week post packed red cell transfusion before collecting a sample for genetic testing. Consult the on-service Molecular Geneticist as needed.

Test results should be interpreted in the context of clinical findings, family history, and other laboratory data. Errors in our interpretation of results may occur if information given is inaccurate or incomplete.

Categories
Conditions/Tests

Alpha Thalassemia

Hemoglobin Disorders

Hemoglobin H Disease; Hydrops Fetalis; Alpha Thalassemia Minor; Alpha Thalassemia Trait; Thalassemia Intermedia; Cooley’s Anemia; Mediterranean Anemia; Beta Thalassemia Major; Beta Thalassemia Minor; Beta Thalassemia Trait; Sickle Cell Disease; Sickle Cell Anemia; Hemoglobin C Trait; Hemoglobin E Trait

It is the responsibility of the ordering physician to ensure that informed consent has been obtained from the patient/legal guardian before ordering genetic testing. Please review the following Pre-Test Counselling Information with your patient before requesting any of our genetic tests.

Clinical Features

Thalassemias and hemoglobinopathies are conditions affecting the quantity and functionality, respectively, of hemoglobin within red blood cells.

The thalassemias are the result of mutations that decrease or eliminate the production of individual globin chains of the hemoglobin tetramer.

The sickle cell disorders are hemoglobinopathies caused by specific point mutations in the β globin gene (hemoglobins S, C, and E) that result in structural abnormalities of the protein rather than decreased production.  The clinical features of the sickle disorders can be quite variable, depending in part on the particular number and combination of α globin mutations.

In addition, since both the α- and β-globin chains comprise the primary adult hemoglobin, the co-inheritance of β globin gene mutations (for either thalassemia or hemoglobinopathies) and α globin mutations (for thalassemia) further increases the clinical variability encountered in this group of disorders.

Genetics

Alpha thalassemia

Alpha thalassemia typically results from deletion of one or more of the four α globin genes.  Rare point mutations may also contribute to the condition.

Beta thalassemia

Beta thalassemia results most commonly from point mutations that lead to a reduction or complete loss of protein synthesis from one or both β globin genes.

Sickling disorders

The sickling disorders are the result of single point mutations in the β globin gene that result in the production of abnormal β globin chains.  HbS, the hemoglobin that causes sickle cell disease when present in the homozygous state, is caused by a p.Glu6Val β globin substitution (c.20A>T).  HbC is caused by a p.Glu6Lys (c.19G>A) β globin substitution .  HbE is caused by a p.Glu26Lys (c.79G>A) β globin substitution.  Notably, the HbE mutation results in the activation of a cryptic donor splice site, resulting in a thalassemia phenotype when co-inherited with another beta thalassemia mutation.

Other hemoglobinopathies result from various combinations of alpha and/or beta globin mutations as well as the other globin chain genes.

Indications for Testing

A hematology profile, including CBC and hemoglobin electrophoresis/HPLC, must be performed prior to ordering molecular genetic testing for the hemoglobin disorders unless an individual has a clinical diagnosis of one of the hemoglobin disorders.  If hematology investigations require follow up with molecular genetic testing, then these tests may be ordered.

  1. Confirmation of diagnosis: 
    1. Testing ordered by a hematologist as relevant to the clinical presentation of the patient; to confirm a suspected or known clinical diagnosis or clarify unusual hemoglobinopathy cases.
  2. Carrier testing:
    1. When ordered by a hematologist: as relevant to the clinical presentation/management of disease of the patient.
    2. Pediatric patients: to aid in the discrimination of carrier status from iron deficiency anemia.
    3. Adults of reproductive age: as per the SOGC-CCMG clinical practice guideline (2008).
    4. Specific for alpha thalassemia:
      1. In adults of reproductive age when:
        1. Both members of the couple have beta thalassemia trait and they may also be at risk of conceiving a child with Hemoglobin Barts hydrops fetalis syndrome.
        2. One member of the couple has beta thalassemia trait and the other has hematology suggestive of alpha thalassemia trait (i.e. their pregnancy may also be at risk of Hb Barts/hydrops fetalis)
      2. NB: Carrier screening to determine the reproductive risk for HbH disease is NOT an indication for molecular genetic testing that is eligible for coverage by BC MSP unless one member of the couple has hematology consistent with alpha thalassemia trait and the other has HPLC findings consistent with the HBA2 Constant Spring or Quong Sze mutations.
  3. Prenatal testing (prenatal diagnosis requests are not normally accepted from physicians other than Medical Geneticists):
    1. Pregnancies known to be at risk based on parental carrier screening or ultrasound findings.

Contraindications

Carrier screening to determine the reproductive risk for HbH disease is NOT an indication for molecular genetic testing for alpha thalassemia except where one member of the couple has hematology consistent with alpha thalassemia trait and the other has HPLC findings consistent with a pathogenic HBA1 or HBA2 mutation (for example, hemoglobin Constant Spring). Genetic counselling is required prior to testing for couples in this scenario.

Description of this Assay

Alpha thalassemia: Gap junction PCR analysis is carried out to detect the –SEA, -α20.5, –MED, –FIL, –THAI, -α3.7, and -α4.2 deletions. Bidirectional Sanger sequencing across the region of the alpha-2 gene (HBA2) that contains the Constant Spring (c.427T>C, p.*143GlnextX32) and Quong Sze (c.377T>C, p.Leu126Pro) mutations is not routinely performed, but is available in certain clinical scenarios; consult on-service Molecular Geneticist.

Beta thalassemia & Hemoglobins S, C, E: Bidirectional Sanger sequencing across all exons of the HBB gene and intron sequences flanking each exon (exon 1: c.-105 to c.92+10; exon 2: c.93-25 to c.315+25; exon 3: c.316-200 to c*110). 

Reference Sequence

HBA: NM_000517.4  The ‘A’ within the initiation codon, ATG, is designated as nucleotide number 1.

HBB: NM_000518.4  The ‘A’ within the initiation codon, ATG, is designated as nucleotide number 1.

Sensitivity and Limitations

Alpha thalassemia: The deletion assay detects the most common gross deletions reported in at-risk ethnicities.  The sensitivity depends on the ethnic background of the individual.  Rarer known alpha-globin deletions are not detected by this assay.  
Further, this assay does not detect: deletions that abolish the regulatory activity of the region leading to failure to transcribe the α globin genes; other (point, etc) mutations in the alpha globin genes; or the presence of 3 copies of the alpha globin gene (AKA triple alpha globin). The Hb Constant Spring and Hb Quong Sze point mutations are detected in a separate assay that is not routinely performed by our laboratory, but can be requested in specific scenarios (contact the on-service Molecular Geneticist to discuss).

Beta thalassemia: This assay detects up to 97% of mutations in the beta globin gene, including the point mutations resulting in hemoglobin S, C, and E.  Deletions of the beta globin gene and deletions of the beta globin gene cluster would not be detected by this assay, as well as some rarer intronic mutations.

Turnaround Time

Routine

6 weeks

Pregnancy-related/Prenatal

If pregnancy management will be altered, 3 weeks; otherwise, routine TAT.

Specimen Requirements

Blood: 4 mL EDTA is optimal (Minimum: 1 mL EDTA)
DNA: 100 μL at 200 ng/μL is optimal (Minimum: 30 μL at 200 ng/μL)

Label each sample with three patient identifiers; preferably patient name, PHN, and date of birth and ship to the address below. Samples should be shipped at room temperature with a completed MGL Requisition to arrive Monday to Friday (not on Canadian statutory holidays).  

Prenatal Specimens
Prenatal testing REQUIRES LABORATORY CONSULTATION PRIOR TO THE PROCEDURE and can only be ordered by a Medical Geneticist. Contact the laboratory at 604-875-2852 and choose the appropriate option for the Molecular Geneticist on service.
Chorionic Villi: 20 mg.
Direct Amniotic fluid: 25 mL collected in two separate tubes of equal volume.
Cultured Amniocytes: Two (2) 100% confluent T-25 flasks.
DNA extracted from prenatal specimens: 100 μL at 200 ng/μL is optimal (Minimum: 30 μL at 200 ng/μL)

Label each sample with three patient identifiers; preferably patient name, PHN, and date of birth. Ship samples by overnight courier with a completed MGL Requisition to arrive Monday to Friday (not on Canadian statutory holidays) as follows:

  • Villi – on wet ice or in media at room temperature
  • Amniocytes, Amniotic fluid, DNA – at room temperature

Shipping Address

Specimen Receiving Room 2J20

Children’s & Women’s Health Centre of British Columbia – Laboratory

4500 Oak Street, Vancouver, BC, V6H 3N1


Additional Requirements

A hematology profile, including CBC and hemoglobin electrophoresis/HPLC MUST accompany the sample and requisition or be faxed separately to MGL when ordering testing for any of the hemoglobin disorders.

Test Price and Billing

Testing is only available to residents of Canada, except in very specific circumstances where testing is urgent or emergent.  Payment is not required when requests are made for individuals who are insured by Health Insurance BC (administered through the BC Medical Services Plan (MSP)) AND eligible for testing according to the test utilization guidelines / policy. If the individual undergoing testing is not insured by these providers or does not meet utilization guidelines or policy, please complete a billing form; testing will only commence after receipt of billing informationTest prices can be found here.

Cautions

Molecular genetic testing is limited by the current understanding of the genome and the genetics of a particular disease, as well as by the method of detection used.

Rare single nucleotide variants or polymorphisms could lead to false-negative or false-positive results. If results obtained do not match the clinical findings, consult the on-service Molecular Geneticist.

A previous bone marrow transplant from an allogenic donor will result in molecular data that reflects the donor genotype rather than the recipient (patient) genotype. Consult the on-service Molecular Geneticist for approach to testing in such individuals.

Transfusions performed with packed red blood cells will generally not affect the outcome of molecular genetic testing. However, if there is no clinical urgency, the cautious approach is to wait one week post packed red cell transfusion before collecting a sample for genetic testing. Consult the on-service Molecular Geneticist as needed.

Test results should be interpreted in the context of clinical findings, family history, and other laboratory data. Errors in our interpretation of results may occur if information given is inaccurate or incomplete.

Categories
Conditions/Tests

Achondroplasia

Achondroplasia

It is the responsibility of the ordering physician to ensure that informed consent has been obtained from the patient/legal guardian before ordering genetic testing. Please review the following Pre-Test Counselling Information with your patient before requesting any of our genetic tests.

Clinical Features

Achondroplasia is the most common form of inherited disproportionate short stature, with a prevalence of approximately 1/15,000 to 1/40,000 births. It is characterized by arms and legs that are disproportionately short compared to the trunk. Also characteristic are a large head, frontal bossing, and midface hypoplasia.

Genetics

Achondroplasia is caused by mutations in the FGFR3 gene, which encodes fibroblast growth factor receptor 3, a negative regulator of bone growth. Inheritance is autosomal dominant, though more than 80% of cases are the result of de novo mutations (i.e., both parents are of normal stature). The missense substitution c.1138G>A (p.Gly380Arg) accounts for more than 98% of mutant FGFR3 alleles in achondroplasia, with c.1138G>C (p.Gly380Arg) accounting for another 1%.

Indications for Testing

  1. Confirmation of diagnosis:
    1. In individuals with clinical features suggestive of achondroplasia.
  2. Prenatal testing (prenatal diagnosis requests are not normally accepted from physicians other than Medical Geneticists):
    1. In pregnancies born to a couple in which one or both parents has achondroplasia
    2. In pregnancies where ultrasound findings are suggestive of achondroplasia

Description of this Assay

Bidirectional Sanger sequencing of the FGFR3 coding region containing codon 380 is carried out to identify the 2 most common mutations in achondroplasia, which account for over 99% of cases.

Reference Sequence

NM_000142.4 The `A` within the initiation codon, ATG, is designated as nucleotide number 1.

Sensitivity and Limitations

A very small fraction of individuals with achondroplasia will have the condition due to a mutation in the FGFR3 gene that cannot be detected by this assay. Therefore, a negative result does not absolutely exclude a diagnosis of achondroplasia.

Turnaround Time

Routine

8 weeks

Pregnancy-related/Prenatal

If pregnancy management will be altered, 3 weeks; otherwise, routine TAT.

Specimen Requirements

Blood: 4 mL EDTA is optimal (Minimum: 1 mL EDTA)
DNA: 100 μL at 200 ng/μL is optimal (Minimum: 30 μL at 200 ng/μL)

Label each sample with three patient identifiers; preferably patient name, PHN, and date of birth and ship to the address below. Samples should be shipped at room temperature with a completed MGL Requisition to arrive Monday to Friday (not on Canadian statutory holidays).  

Prenatal Specimens
Prenatal testing REQUIRES LABORATORY CONSULTATION PRIOR TO THE PROCEDURE and can only be ordered by a Medical Geneticist. Contact the laboratory at 604-875-2852 and choose the appropriate option for the Molecular Geneticist on service.
Chorionic Villi: 20 mg.
Direct Amniotic fluid: 25 mL collected in two separate tubes of equal volume.
Cultured Amniocytes: Two (2) 100% confluent T-25 flasks.
DNA extracted from prenatal specimens: 100 μL at 200 ng/μL is optimal (Minimum: 30 μL at 200 ng/μL)

Label each sample with three patient identifiers; preferably patient name, PHN, and date of birth. Ship samples by overnight courier with a completed MGL Requisition to arrive Monday to Friday (not on Canadian statutory holidays) as follows:

  • Villi – on wet ice or in media at room temperature
  • Amniocytes, Amniotic fluid, DNA – at room temperature

Shipping Address

Specimen Receiving Room 2J20

Children’s & Women’s Health Centre of British Columbia – Laboratory

4500 Oak Street, Vancouver, BC, V6H 3N1


Test Price and Billing

Testing is only available to residents of Canada, except in very specific circumstances where testing is urgent or emergent.  Payment is not required when requests are made for individuals who are insured by Health Insurance BC (administered through the BC Medical Services Plan (MSP)) AND eligible for testing according to the test utilization guidelines / policy. If the individual undergoing testing is not insured by these providers or does not meet utilization guidelines or policy, please complete a billing form; testing will only commence after receipt of billing informationTest prices can be found here.

Cautions

Molecular genetic testing is limited by the current understanding of the genome and the genetics of a particular disease, as well as by the method of detection used. This method will not detect all mutations (e.g., mutations outside the regions tested as described above, large genomic deletions, promoter mutations, regulatory element mutations).

For carrier/predictive testing due to family history, it is generally important to first document the gene mutation in an affected or carrier family member. This information should be provided to the laboratory for assessment of whether the assay is appropriate for detection of the familial mutation, and to aid in the interpretation of data.

In rare cases, DNA alterations of undetermined or unclear clinical significance may be identified.

Rare single nucleotide variants or polymorphisms could lead to false-negative results. If results obtained do not match the clinical findings, consult the on-service Molecular Geneticist.

A previous bone marrow transplant from an allogenic donor will result in molecular data that reflects the donor genotype rather than the recipient (patient) genotype. Consult the on-service Molecular Geneticist for approach to testing in such individuals.

Transfusions performed with packed red blood cells will generally not affect the outcome of molecular genetic testing. However, if there is no clinical urgency, the cautious approach is to wait one week post packed red cell transfusion before collecting a sample for genetic testing. Consult the on-service Molecular Geneticist as needed.

Test results should be interpreted in the context of clinical findings, family history, and other laboratory data. Errors in our interpretation of results may occur if information given is inaccurate or incomplete.

Categories
Uncategorized

Contact

Contact

BC Children’s Hospital & BC Women’s Hospital

4500 Oak Street, Vancouver B.C. V6H 3N1

Molecular Genetics

Tel: 604-875-2852
Fax: 604-875-2707

Email: Click here to send us an email.

Cytogenetics

Tel: 604-875-2304
Fax: 604-875-3601