Categories
Gene

HBA

Hemoglobin Disorders

Hemoglobin H Disease; Hydrops Fetalis; Alpha Thalassemia Minor; Alpha Thalassemia Trait; Thalassemia Intermedia; Cooley’s Anemia; Mediterranean Anemia; Beta Thalassemia Major; Beta Thalassemia Minor; Beta Thalassemia Trait; Sickle Cell Disease; Sickle Cell Anemia; Hemoglobin C Trait; Hemoglobin E Trait

It is the responsibility of the ordering physician to ensure that informed consent has been obtained from the patient/legal guardian before ordering genetic testing. Please review the following Pre-Test Counselling Information with your patient before requesting any of our genetic tests.

Clinical Features

Thalassemias and hemoglobinopathies are conditions affecting the quantity and functionality, respectively, of hemoglobin within red blood cells.

The thalassemias are the result of mutations that decrease or eliminate the production of individual globin chains of the hemoglobin tetramer.

The sickle cell disorders are hemoglobinopathies caused by specific point mutations in the β globin gene (hemoglobins S, C, and E) that result in structural abnormalities of the protein rather than decreased production.  The clinical features of the sickle disorders can be quite variable, depending in part on the particular number and combination of α globin mutations.

In addition, since both the α- and β-globin chains comprise the primary adult hemoglobin, the co-inheritance of β globin gene mutations (for either thalassemia or hemoglobinopathies) and α globin mutations (for thalassemia) further increases the clinical variability encountered in this group of disorders.

Genetics

Alpha thalassemia

Alpha thalassemia typically results from deletion of one or more of the four α globin genes.  Rare point mutations may also contribute to the condition.

Beta thalassemia

Beta thalassemia results most commonly from point mutations that lead to a reduction or complete loss of protein synthesis from one or both β globin genes.

Sickling disorders

The sickling disorders are the result of single point mutations in the β globin gene that result in the production of abnormal β globin chains.  HbS, the hemoglobin that causes sickle cell disease when present in the homozygous state, is caused by a p.Glu6Val β globin substitution (c.20A>T).  HbC is caused by a p.Glu6Lys (c.19G>A) β globin substitution .  HbE is caused by a p.Glu26Lys (c.79G>A) β globin substitution.  Notably, the HbE mutation results in the activation of a cryptic donor splice site, resulting in a thalassemia phenotype when co-inherited with another beta thalassemia mutation.

Other hemoglobinopathies result from various combinations of alpha and/or beta globin mutations as well as the other globin chain genes.

Indications for Testing

A hematology profile, including CBC and hemoglobin electrophoresis/HPLC, must be performed prior to ordering molecular genetic testing for the hemoglobin disorders unless an individual has a clinical diagnosis of one of the hemoglobin disorders.  If hematology investigations require follow up with molecular genetic testing, then these tests may be ordered.

  1. Confirmation of diagnosis: 
    1. Testing ordered by a hematologist as relevant to the clinical presentation of the patient; to confirm a suspected or known clinical diagnosis or clarify unusual hemoglobinopathy cases.
  2. Carrier testing:
    1. When ordered by a hematologist: as relevant to the clinical presentation/management of disease of the patient.
    2. Pediatric patients: to aid in the discrimination of carrier status from iron deficiency anemia.
    3. Adults of reproductive age: as per the SOGC-CCMG clinical practice guideline (2008).
    4. Specific for alpha thalassemia:
      1. In adults of reproductive age when:
        1. Both members of the couple have beta thalassemia trait and they may also be at risk of conceiving a child with Hemoglobin Barts hydrops fetalis syndrome.
        2. One member of the couple has beta thalassemia trait and the other has hematology suggestive of alpha thalassemia trait (i.e. their pregnancy may also be at risk of Hb Barts/hydrops fetalis)
      2. NB: Carrier screening to determine the reproductive risk for HbH disease is NOT an indication for molecular genetic testing that is eligible for coverage by BC MSP unless one member of the couple has hematology consistent with alpha thalassemia trait and the other has HPLC findings consistent with the HBA2 Constant Spring or Quong Sze mutations.
  3. Prenatal testing (prenatal diagnosis requests are not normally accepted from physicians other than Medical Geneticists):
    1. Pregnancies known to be at risk based on parental carrier screening or ultrasound findings.

Contraindications

Carrier screening to determine the reproductive risk for HbH disease is NOT an indication for molecular genetic testing for alpha thalassemia except where one member of the couple has hematology consistent with alpha thalassemia trait and the other has HPLC findings consistent with a pathogenic HBA1 or HBA2 mutation (for example, hemoglobin Constant Spring). Genetic counselling is required prior to testing for couples in this scenario.

Description of this Assay

Alpha thalassemia: Gap junction PCR analysis is carried out to detect the –SEA, -α20.5, –MED, –FIL, –THAI, -α3.7, and -α4.2 deletions. Bidirectional Sanger sequencing across the region of the alpha-2 gene (HBA2) that contains the Constant Spring (c.427T>C, p.*143GlnextX32) and Quong Sze (c.377T>C, p.Leu126Pro) mutations is not routinely performed, but is available in certain clinical scenarios; consult on-service Molecular Geneticist.

Beta thalassemia & Hemoglobins S, C, E: Bidirectional Sanger sequencing across all exons of the HBB gene and intron sequences flanking each exon (exon 1: c.-105 to c.92+10; exon 2: c.93-25 to c.315+25; exon 3: c.316-200 to c*110). 

Reference Sequence

HBA: NM_000517.4  The ‘A’ within the initiation codon, ATG, is designated as nucleotide number 1.

HBB: NM_000518.4  The ‘A’ within the initiation codon, ATG, is designated as nucleotide number 1.

Sensitivity and Limitations

Alpha thalassemia: The deletion assay detects the most common gross deletions reported in at-risk ethnicities.  The sensitivity depends on the ethnic background of the individual.  Rarer known alpha-globin deletions are not detected by this assay.  
Further, this assay does not detect: deletions that abolish the regulatory activity of the region leading to failure to transcribe the α globin genes; other (point, etc) mutations in the alpha globin genes; or the presence of 3 copies of the alpha globin gene (AKA triple alpha globin). The Hb Constant Spring and Hb Quong Sze point mutations are detected in a separate assay that is not routinely performed by our laboratory, but can be requested in specific scenarios (contact the on-service Molecular Geneticist to discuss).

Beta thalassemia: This assay detects up to 97% of mutations in the beta globin gene, including the point mutations resulting in hemoglobin S, C, and E.  Deletions of the beta globin gene and deletions of the beta globin gene cluster would not be detected by this assay, as well as some rarer intronic mutations.

Turnaround Time

Routine

6 weeks

Pregnancy-related/Prenatal

If pregnancy management will be altered, 3 weeks; otherwise, routine TAT.

Specimen Requirements

Blood: 4 mL EDTA is optimal (Minimum: 1 mL EDTA)
DNA: 100 μL at 200 ng/μL is optimal (Minimum: 30 μL at 200 ng/μL)

Label each sample with three patient identifiers; preferably patient name, PHN, and date of birth and ship to the address below. Samples should be shipped at room temperature with a completed MGL Requisition to arrive Monday to Friday (not on Canadian statutory holidays).  

Prenatal Specimens
Prenatal testing REQUIRES LABORATORY CONSULTATION PRIOR TO THE PROCEDURE and can only be ordered by a Medical Geneticist. Contact the laboratory at 604-875-2852 and choose the appropriate option for the Molecular Geneticist on service.
Chorionic Villi: 20 mg.
Direct Amniotic fluid: 25 mL collected in two separate tubes of equal volume.
Cultured Amniocytes: Two (2) 100% confluent T-25 flasks.
DNA extracted from prenatal specimens: 100 μL at 200 ng/μL is optimal (Minimum: 30 μL at 200 ng/μL)

Label each sample with three patient identifiers; preferably patient name, PHN, and date of birth. Ship samples by overnight courier with a completed MGL Requisition to arrive Monday to Friday (not on Canadian statutory holidays) as follows:

  • Villi – on wet ice or in media at room temperature
  • Amniocytes, Amniotic fluid, DNA – at room temperature

Shipping Address

Specimen Receiving Room 2J20

Children’s & Women’s Health Centre of British Columbia – Laboratory

4500 Oak Street, Vancouver, BC, V6H 3N1


Additional Requirements

A hematology profile, including CBC and hemoglobin electrophoresis/HPLC MUST accompany the sample and requisition or be faxed separately to MGL when ordering testing for any of the hemoglobin disorders.

Test Price and Billing

Testing is only available to residents of Canada, except in very specific circumstances where testing is urgent or emergent.  Payment is not required when requests are made for individuals who are insured by Health Insurance BC (administered through the BC Medical Services Plan (MSP)) AND eligible for testing according to the test utilization guidelines / policy. If the individual undergoing testing is not insured by these providers or does not meet utilization guidelines or policy, please complete a billing form; testing will only commence after receipt of billing informationTest prices can be found here.

Cautions

Molecular genetic testing is limited by the current understanding of the genome and the genetics of a particular disease, as well as by the method of detection used.

Rare single nucleotide variants or polymorphisms could lead to false-negative or false-positive results. If results obtained do not match the clinical findings, consult the on-service Molecular Geneticist.

A previous bone marrow transplant from an allogenic donor will result in molecular data that reflects the donor genotype rather than the recipient (patient) genotype. Consult the on-service Molecular Geneticist for approach to testing in such individuals.

Transfusions performed with packed red blood cells will generally not affect the outcome of molecular genetic testing. However, if there is no clinical urgency, the cautious approach is to wait one week post packed red cell transfusion before collecting a sample for genetic testing. Consult the on-service Molecular Geneticist as needed.

Test results should be interpreted in the context of clinical findings, family history, and other laboratory data. Errors in our interpretation of results may occur if information given is inaccurate or incomplete.